Second Edition

TRANNING ESSENTIALS -

FOR

ULtradiunning

\%

JASON KOOP

FIGURE 2.1 The contributions of the three energy systems [ATP-PCr, glycolysis, and aerobic] to energy production over time [seconds] during an all-out effort. Adapted from Gastin 2001.

FIGURE 2.2 Mean heart rate responses during (A) 1-minute, (B) 2-minute, (C) 4-minute, and (D) 6-minute intervals. Adapted from Seiler and Sjusren 2004.

FIGURE 2.3 Many of the initial differences between male and female performance can be attributed to social factors like training and cultural support. The remaining differences that contribute to differences in performance are body composition, total body hemoglobin, muscle mass, stroke volume, and VO_{2} max. Source: Joyner 2017.

FIGURE 2.4 Women exhibit higher rates of fax oxidation relative to their body mass. Adapted from Venables, Achten, and Jeukendrup 2005.

Days and phases of an idealized 28-day cycle
FIGURE 2.5 Representation of the hormonal fluctuation across an idealized twenty-eight-day menstrual cycle.

FIGURE 2.6 Matching energy intake to demand. Adapted from Keay 2018.

FIGURE 3.1 Courtney Dauwalter's 2018 training. Source: Koop 2019.

FIGURE 3.2 Jim Walmsley's 2018 training. Source: Koop 2019.

FIGURE 3.3 Proposed determinates of ultramarathon performance. Adapted from Millet 2012.

FIGURE 3.4 Typical VO2 max values for elite athletes in various sports. Adapted from Nevill et al. 2003.

FIGURE 4.1 A PubMed search for the word "ultramarathon," "ultra marathon," or "ultra endurance." Accessed March 2021.

PROBLEM	FINISHERS [\%]	NONFINISHERS [\%]
Blisters or "hot spots" on feet	40.1	17.3
Nausea and/or vomiting	36.8	39.6
Muscle pain	36.5	20.1
Exhaustion	23.1	13.7
Inadequately heat acclimatized	21.0	28.1
Inadequately trained	13.5	15.1
Muscle cramping	11.4	15.8
Injury during the race	9.0	10.1
Ongoing injury	7.5	15.8
Illness before the race	6.0	5.0
Started out too fast	5.1	6.5
Vision problems	2.1	3.6
Difficulty making cutoff times	1.8	27.3
Other, not categorized	11.7	26.6

TABLE 4.1 Comparisons of problems that impacted race performance.

PROBLEM	$\%$
Nausea and/or vomiting	23.0
Unable to make cutoff times	18.7
Other, not categorized	12.2
Ongoing injury	7.9
Injury during the race	7.2
Inadequately heat acclimatized	7.2
Blisters or "hot spots" on feet	5.8
Muscle cramping	5
Muscle pain	4.3
Exhaustion	3.6
Illness before the race	2.9
Vision problems	0.7
Started out too fast	0.7
Inadequately trained	0.7

TABLE 4.2 Main reasons given by nonfinishers for dropping out. Source: Hoffman and Fogard 2011.

FIGURE 4.2 Ultramarathon race stressors.

FIGURE 4.3 Heat + moisture + friction $=$ blister.

FIGURE 4.4 Graph showing an initial decrease, then increase, in friction of common lubricants when used on the skin. Source: Nacht et al. 1981.

FIGURE 4.5 Postrace creatine kinase (CK) levels in Ultra-Trail du Mont-Blanc finishers. Adapted from Millet et al. 2011.

FIGURE 4.6

FIGURE 5.1 (A) Normal and (B) parallel ground reaction forces vs time traces for a typical subject (73 kg) running at $3 \mathrm{~m} / \mathrm{s}[\sim 9 \mathrm{~min} / \mathrm{mi}]$ on different slopes. Adapted from Gottschall and Kram 2005b.

FIGURE 5.2 Vertical [normal] ground reaction force [GRF) for running at different speeds and walking. The running GRF increases with speed, and the walking GRF is noticeably less.

Adapted from Browning and Kram 2007; Gottschal and Kram 2005b; Grabowski and Kram 2008; Keller et al. 1996; Nilsson and Thorstensson 1989.
(A)

(B)

Vlat
 BF

TA

FIGURE 5.3 [A] EMG activity for various muscles in walking, running, and returning to walking. The higher the EMG amplitude, the greater the muscle activation. (B) EMG patterns for various muscles while walking, running, and returning to walking. The patterns of activation are different for walking, running, and then returning to a walk.

Note: Vlat = vastus lateralis; BF = biceps femoris; TA = tibialis anterior; LG = gastrocnemius lateralis. Adapted from Cappellini et al. 2006.

FIGURE 5.4 The hip, knee, and foot are all in different positions when walking or running on level ground, running uphill, and running downhill. Adapted from Guo et al. 2006; Hicheur et al. 2006; Yokozawa 2006.

FIGURE 5.5 Representation of the metabolic cost of transport for walking and running as a function of speed. The vertical arrows represent the preferred walking speed (PWS) and preferred transition speed (PTS). Adapted from Bramble and Lieberman 2004.

	GRADE	-10\%		-6\%		-2\%		0\%		2\%		6\%		10\%	
		NGP	GAP												
	8:00	15:18	11:27	11:13	10:05	8:51	8:40	8:00	8:00	7:19	7:22	6:14	6:16	5:26	5:21
$\begin{gathered} \text { PACE } \\ \text { PER } \\ \text { MILE } \end{gathered}$	10:00	19:07	14:19	14:00	12:37	11:04	10:50	10:00	10:00	9:09	9:13	7:48	7:50	6:47	6:42
	12:00	22:56	17:11	16:48	15:08	13:17	13:00	12:00	12:00	10:59	11:04	9:21	9:24	8:08	8:02

TABLE 6.1 NGP and GAP for different grades and paces.

PLATFORM	NAME	INTENSITY DETERMINANT	METHOD OF SCORING
Strava	Relative Effort ${ }^{\text {TM }}$	Heart rate	Threshold heart rate, duration of run, time spent at different intensities
TrainingPeaks	TSSTM	Running Power	Threshold power, duration of run, NGP for run
TrainingPeaks	rTSS ${ }^{\text {TM }}$	NGP	Threshold pace, duration of run, NGP for run
TrainingPeaks	hrTSS		

TABLE 6.2 Training stress scoring systems.

TYPE OF RUN	TSS/rTSS/hrTSS POINTS
60-min RecoveryRun	$50-80$
$90-m i n$ EnduranceRun with 3×10 min TempoRun	$100-150$
$90-m i n$ EnduranceRun with 6×3 min RunningIntervals	$100-150$
2.5-hr EnduranceRun	$150-200$
$50-$ mile race	$400-600$

TABLE 6.3 Training stress scoring systems.

FIGURE 6.1 Analysis of an athlete's training for Western States. The CTL (blue-shaded area) is highest just before the Western States 100. This indicates that the athlete was most fit just before the race. The CTL also ramps up fastest during the tempo phases, indicating that they are generally the most stressful phases.

FIGURE 6.2 Strava segments with the trend line generally getting better over time.

FIGURE 6.3 Example of how fatigue affects heart rate. Heart rate (red line) starts high due to freshness and then drops as fatigue sets in, even though NGP remains roughly the same for the first three climbs.

FIGURE 6.4 Two consecutive days of TempoRun intervals. While the normalized paces are similar, the heart rate is generally depressed on the second day. Had the athlete been training using heart rate, he either would not have been able to do the workout or would have pushed too hard.

FIGURE 6.5 Impact of cardiac drift during a 3×10-minute TempoRun workout where the heart rate increases throughout each interval and from interval to interval.

RPE	ACTIVITY	TALKING ABILITY
$1-3$	Sitting on the couch	Uninhibited
$4-5$	Easy run	Story time!
$5-6$	Hard workout	Comfortable conversation
$7-8$	Very hard workout	2-3 sentences at a time
$8-9$	Extremely hard workout	Single word, probably four letters
$9-10$		

TABLE 6.4 RPE and the Talk Test.

FIGURE 6.6 An EKG reading of the R-R interval across two heartbeats. Adapted from Dong (2016).

FIGURE 7.1 Hematologic effects to altitude exposure.

	LIVE HIGH, TRAIN HIGH	LIVE HIGH, TRAIN LOW	LIVE HIGH, TRAIN HIGH / LOW
Living	Living between 6,840-8,050 ft	Living between 6,840-8,050 ft	Living between 6,840-8,050 ft
Training	Training at or above 6,000 ft	Training below $4,100 \mathrm{ft}$	Train at low intensities between 6,840-8,050 ft, and high intensity workouts below $4,100 \mathrm{ft}$ *
Duration of Protocol	~21-28 days	~21-28 days	~21-28 days

TABLE 7.1 Different altitude training protocols.
*Living between 6,840-8,050 ft is optimal for hematological responses while not impairing recovery and sleep. Moving high-intensity runs below $4,100 \mathrm{ft}$ is also optimal because it allows you to preserve the ability to effectively deliver oxygen to working muscles, maintaining the quality of higher-intensity sessions.

FIGURE 7.2 Are you a good candidate for altitude training?

FIGURE 7.3 Physiological response to temperature change.

FIGURE 7.4 Thermoregulation of the human body.

FIGURE 7.5 Time course of adaptations from heat acclimation. Adapted from Périard, Racinais, and Sawka 2015.

FIGURE 7.6 Different heat acclimation methods. Adapted from Daanen, Racinais, and Périard 2017.

FIGURE 7.7 Hierarchy of heat acclimation protocols.

FIGURE 7.8 How to choose the right heat acclimation protocol.

MON	TUES	WEDS	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Sauna after exercise for 15 min	Sauna after exercise for 15 min	Sauna after exercise for $15-30 \mathrm{~min}$	Sauna after exercise for $15-30 \mathrm{~min}$	Sauna after exercise for 30 min	Sauna after exercise for 30 min	Sauna after exercise for 30 min
12	13	14	15	16	17	18
Sauna after exercise for 30 min	Sauna after exercise for 30 min	Sauna after exercise for 30 min			Sauna after exercise for 15-30 min	
19	20	21	22	23	24	25
Sauna after exercise for 15-30 min					Race Day	

FIGURE 7.9 An example of a heat acclimation protocol using a sauna.

	MON	TUES	WEDS	THURS	FRI	SAT	SUN
	5	6	7	8	9	10	11
6 weeks before race	Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min		Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min	
	12	13	14	15	16	17	18
5 weeks before race	Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min		Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min	Sauna after exercise for $20-30 \mathrm{~min}$
2-4 weeks before race	2 sauna sessions per week						
	9	10	11	12	13	14	15
	Sauna after exercise for 20-30 min	Sauna after exercise for 20-30 min		Sauna after exercise for 20-30 min			
	9	10	11	12	13	14	15
	Sauna after exercise for 20-30 min	Sauna after exercise for $15-20 \mathrm{~min}$		Sauna after exercise for $15-20$ min		Race Day	

FIGURE 7.10 Two-phase sauna acclimation protocol.

FIGURE 8.1 How core body temperature, cortisol, and melatonin fluctuate throughout the day.

FIGURE 8.2 Effects of RED-S. Adapted from Mountjoy et al. 2018.

GROUP A

OVERVIEW OF CATEGORY
\(\left.$$
\begin{array}{l|ll}\hline \begin{array}{l}\text { Evidence level: } \\
\text { Supported for use } \\
\text { in specific situations in } \\
\text { sport using evidence- } \\
\text { based protocols }\end{array} & \begin{array}{l}\text { Sports foods } \\
\text { Specialized products used to } \\
\text { provide a convenient source of } \\
\text { nutrients when it is impractical } \\
\text { to consume everyday foods }\end{array} & \begin{array}{l}\text { Sports drink } \\
\text { Sports gel }\end{array}
$$

Sports confectionery

Sports bar

Electrolyte supplement\end{array}\right]\)| Isolated protein supplement |
| :--- |
| Mixed macronutrient |
| supplement (bar, powder, |
| liquid meal) |

TABLE 8.1 Various supplements and evidence. Adapted from "Supplements." Sport Australia. www.ais.gov.au/ nutrition/supplements accessed September 2020.

GROUP B

OVERVIEW OF
CATEGORY
Evidence Level:
Deserving of further
research and could
be considered for
provision to
athletes under a
research protocol or
case-managed
monitoring situation

SUBCATEGORIES

\(\left.$$
\begin{array}{ll}\text { Food polyphenols } & \text { Cherries, berries, } \\
\text { Food compounds which may have bioactivity } \\
\text { including antioxidant and anti-inflammatory } \\
\text { properties } \\
\text { May be consumed in food forms or as isolated } \\
\text { chemicals }\end{array}
$$ \quad \begin{array}{l}Quercitin, ECGC,

epicatechins,

and others\end{array}\right\}\)| Other | Collagen support products |
| :--- | :--- |
| Compounds which attract interest for potential | Carnitine |
| benefits to body metabolism and function | HMB |
| | Ketone supplements |
| | Fish oils |
| Phosphate | |
| | Curcumin |

Sick pack

Multi-supplement approach to address an issue of health or well-being
Best used with advice from an appropriate medical/nutrition practitioner

Amino acids

Constituents of protein which may have effects when taken in isolation, or may be consumed individually by the athlete to fortify an existing food/supplement that is lacking in this amino acid

Antioxidants

Compounds often found in foods which protect against oxidation or reactions with free-radical chemicals
May be consumed in food forms or as isolated chemicals

EXAMPLES

Cherries, berries, and black currants
 Quercitin, ECGC, epicatechins, and others

Carnitine

HMB
Ketone supplements
Fish oils
Phosphate
Curcumin

Zinc lozenges and
Vitamin C

BCAA/Leucine
Tyrosine

Vitamin C and E
N -acetyl cysteine

TABLE 8.1 Various supplements and evidence. Adapted from "Supplements." Sport Australia. www.ais.gov.au/ nutrition/supplements accessed September 2020.

	RPE	TYPICAL INTERVAL TIME	TOTAL TIME AT INTENSITY	WORK : REST	TYPICAL WORKOUT	FREQUENCY PER WEEK
RecoveryRun (RR)	4 to 5	NA	20-60 min	NA	40-min RR	2-3
EnduranceRun (ER)	5 to 6	NA	$\begin{aligned} & 30 \text { min- } \\ & 6+\text { hours } \end{aligned}$	NA	2-hr ER	2-6
SteadyStateRun [SSR]	7 to 8	20-60 min	30 min- 2 hours	5 to 8:1	2-hr ER with $2 \times 30 \mathrm{~min}$ SSR, 5-min recovery between intervals	2-4
TempoRun (TR)	8 to 9	8-20 min	30-75 min	2:1	2-hr ER with 3×12 min TR, 6-min recovery between intervals	2-3
RunningIntervals (RI)	9 to 10	1-3 min	12-24 min	1:1	90-min ER with 6×3 min RI, 3-min recovery between intervals	2-3

TABLE 9.1 The five critical workouts.

RUNNER EXPERIENCE	WORKOUT STRUCTURE	RPE	total time AT INTENSITY
Beginner	1×40 minutes hard	7 to 8	40 min
Intermediate	2×25 minutes hard with 4 minutes recovery	7 to 8	50 min
Advanced	2×30 minutes hard with 4 minutes recovery	7 to 8	60 min
Pro	2×45 minutes hard with 4 minutes recovery	7 to 8	90 min

TABLE 9.2 SteadyStateRun examples.

RUNNER EXPERIENCE	WORKOUT STRUCTURE	RPE	TOTAL TIME AT INTENSITY
Beginner	3×12 minutes hard with 6 minutes recovery	8 to 9	36 min
Intermediate	4×12 minutes hard with 6 minutes recovery	8 to 9	48 min
Advanced	4×15 minutes hard with 7 minutes recovery	8 to 9	60 min
Pro	5×15 minutes hard with 7 minutes recovery	8 to 9	75 min

TABLE 9.3 TempoRun examples.

RUNNER EXPERIENCE	WORKOUT STRUCTURE	RPE	TOTAL TIME AT INTENSITY
Beginner	4×3 minutes hard with 3 minutes recovery	9 to 10	12 min
Intermediate	5×3 minutes hard with 3 minutes recovery	9 to 10	15 min
Advanced	6×3 minutes hard with 3 minutes recovery	9 to 10	18 min
Pro	5×4 minutes hard with 4 minutes recovery	9 to 10	20 min

TABLE 9.4 Runninglntervals examples.

FIGURE 9.1 Oxygen consumption response from traditional, evenly paced intervals [TRAD] and peak and fade intervals. Adapted from Rønnestad et al. 2019.

Racing
Intensity
\% VO2 max

Workouts

TABLE 9.5 Physiological effects of different workouts.

2 HOURS TOTAL

FIGURE 9.2 The right structure for warm-up, workout, and cooldown.

MON	TUES	WED	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Rest Day	15 min warm-up, $5 \times 3 \mathrm{~min} \mathrm{RI}$, 3 min RBI, 15 min cooldown	45 min RecoveryRun	15 min warm-up, 30 min TempoRun, 15 min cooldown	Rest Day	60 min EnduranceRun	60 min EnduranceRun

RBI= REST BETWEEN INTERVALS
FIGURE 10.1 Example of mixed-intensity periodization: a way of organizing training where an athlete does workouts at a few or several different intensities during the week.

FIGURE 10.2 Example of block intensity periodization plan: a way of organizing training where an athlete does workouts at similar intensities during the week.

FIGURE 10.3 An example of a Long-Range Plan.

FIGURE 10.4 Time course for training adaptation. Adapted from Seiler 2006.

FIGURE 10.5 Hierarchy of Endurance Training Needs. Source: Seiler and Sjusren 2004.

FIGURE 10.6 Koop's hierarchy of ultramarathon training needs.

FIGURE 11.1 Are you a good candidate for strength training?

MON	TUES	WED	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Rest Day	$\begin{aligned} & 15 \mathrm{~min} \text { warm-up, } \\ & 5 \times 3 \mathrm{~min} \mathrm{RI}, \\ & 3 \mathrm{~min} \mathrm{RBI}, \\ & 15 \mathrm{~min} \text { cooldown } \end{aligned}$	45 min RecoveryRun	15 min warm-up, $5 \times 3 \mathrm{~min} \mathrm{RI}$, 3 min RBI, 15 min cooldown	Rest Day	60 min EnduranceRun	60 min EnduranceRun
	Strength Day A		Strength Day B			

FIGURE 11.2 Example training week with two scheduled strength-training workouts.

PART OF TRAINING	SETS	REPS	REST	FREQUENCY
Early	$1-5$	$1-5$	$90+$ sec	$3 \times$ week
Mid	3	$8-12$	$45-60$ sec	$2-3 \times$ week
Late	$2-3$	$10-15$ or time-based	As needed	$1-2 \times$ week

TABLE 11.1 Overview of strength-training programming.

MON	TUES	WED	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Rest Day	1:30 EnduranceRun with 5×3 min RunningIntervals, 3 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 5×3 min RunningIntervals, 3 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 5×3 min RunningIntervals, 3 min recovery between intervals	2:00 EnduranceRun
12	13	14	15	16	17	18
Rest Day	1:30 EnduranceRun with 5×3 min RunningIntervals, 3 min recovery between intervals	1:00 RecoveryRun	1:00 RecoveryRun	1:30 EnduranceRun with 4×3 min RunningIntervals, 3 min recovery between intervals	1:00 EnduranceRun	2:00 EnduranceRun
19	20	21	22	23	24	25
Rest Day	1:00 RecoveryRun	1:30 EnduranceRun with 4×3 min Runninglntervals, 3 min recovery between intervals	0:45 RecoveryRun	0:45 RecoveryRun	1:00 RecoveryRun	1:00 RecoveryRun

FIGURE 12.1 A RunningIntervals phase where the hardest workouts are the first four.

FIGURE 12.2 (A) A typical SteadyStateRun phase; (B) a typical RunningInterval phase. Note that the SteadyStateRun phase is longer and includes less recovery between the workouts than the RunningInterval phase.

MON	TUES	WED	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Rest Day	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals
12	13	14	15	16	17	18
Rest Day	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	2:00 EnduranceRun
19	20	21	22	23	24	25
Rest Day	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:30 EnduranceRun with $3 \times 8 \mathrm{~min}$ TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals
26	27	28	29	30	31	1
Rest Day	1:00 RecoveryRun	1:00 RecoveryRun	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 12 \mathrm{~min}$ TempoRun, 6 min recovery between intervals	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	2:00 EnduranceRun

FIGURE 12.3 A back-to-back-style training plan. There is one additional hard workout, as compared to Figure 12.4. Even in this example, the hardest workouts are still early in the phase.

MON	TUES	WED	THURS	FRI	SAT	SUN
5	6	7	8	9	10	11
Rest Day	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	2:00 EnduranceRun
12	13	14	15	16	17	18
Rest Day	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 8 \mathrm{~min}$ TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals	2:00 EnduranceRun
19	20	21	22	23	24	25
Rest Day	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with 3×8 min TempoRun, 4 min recovery between intervals	2:00 EnduranceRun
26	27	28	29	30	31	1
Rest Day	1:00 RecoveryRun	1:00 RecoveryRun	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 12 \mathrm{~min}$ TempoRun, 6 min recovery between intervals	1:00 RecoveryRun	1:30 EnduranceRun with $3 \times 10 \mathrm{~min}$ TempoRun, 5 min recovery between intervals

FIGURE 12.4 A non-back-to-back-style training example. There are only nine hard workouts, as compared to the ten in the back-to-back style.

FIGURE 12.6 Flowchart for determining whether it is time to incorporate a recovery phase.

FIGURE 12.7 Schematic representation of the different types of tapers. Adapted from Mujika and Padilla 2003.

FIGURE 13.1 (A) Fat and carbohydrate oxidation expressed in g/min. (B) Fat and carbohydrate oxidation represented as a percent of total energy expenditure (EE).

FIGURE 13.2 The WUT
diagram helps you monitor your daily hydration status and the likelihood of dehydration. A change in two of the three areas-weight (W), urine color [U], and thirst (T)-indicates that you are likely dehydrated. A change in all three indicates that you are very likely to be dehydrated. Adapted from Cheuvront and Sawka 2005.

FIGURE 13.3 How and where digestion takes place.

FIGURE 13.4 How long can you run with reasonable assumptions about intensity and caloric replacement?

1 Weigh yourself nude right before a run.

2 Go do a one-hour run at EnduranceRun intensity.

3 After the run, strip down, wipe down any sweat, and weigh yourself nude again.

4
Subtract your end weight from your beginning weight. Convert the weight to ounces [one pound equals 16 ounces). This is your hourly sweat rate in those specific conditions.

Aim to replace $\sim 95-98 \%$ [not 100%] of those fluids during a race for those conditions. Why not 100% ? Because in an ultra, weight loss from water stored in fat and carbohydrate are significant and does not

5 need to be replaced. We don't quite know exactly how much fluid needs to be replaced, we just know it's not 100% as some of the fluid loss stems from metabolic processes not related to hydration status. Replacing 100% of the sweat loss in an ultra can lead to hyponatremia, or low blood sodium.

6 Repeat the test in different conditions. I recommend using steps of 10 degrees Fahrenheit.

FIGURE 13.5 The Sweat Test.

FIGURE 13.6 Typical sweat sodium concentrations. Adapted from Baker 2017.

COSTA ET AL. 2019

CARBOHYDRATE

RECOMMENDATIONS \quad| Upwards of $90 \mathrm{~g} / \mathrm{hr}$ [2:1 glucose to fructose) although such a high level likely unnecessary |
| :--- |
| FLUID |
| RECOMMENDATIONS |\quad Provided sufficient fluids/volumes are available, "drink to thirst," "ad libitum"

TILLER ET AL. 2019

CARBOHYDRATE RECOMMENDATIONS	$30-50 \mathrm{~g} / \mathrm{hr}$
FLUID RECOMMENDATIONS	$450-750 \mathrm{ml} / \mathrm{hr}$ [by drinking every 20 min], greater in hot and humid conditions
SODIUM RECOMMENDATIONS	> $575 \mathrm{mg} / \mathrm{L}$
OTHER RECOMMENDATIONS	In training: Individualized, periodized, food-first approach. Moderate-to-high carbohydrate diet ($\sim 60 \%$ of energy intake, $5-8 \mathrm{~g} / \mathrm{kg} / \mathrm{d}$] to limit chronic glycogen depletion. Limit carbohydrate before occasional easy sessions and/or moderating daily carbohydrate intake, which may enhance fat oxidative capacity. This may compromise high-intensity efforts. Also, if doing this, implement with sufficient time to permit adaptations that enhance fat oxidative capacity. Protein intakes of $\sim 1.6 \mathrm{~g} / \mathrm{kg} / \mathrm{d}$ up to $2.5 \mathrm{~g} / \mathrm{kg} / \mathrm{d}$ may be warranted during demanding training. In racing: 5-10 g/hr of protein. Eat (carbohydrate and protein) from variety of sources, more savory foods in longer races. Use progressive gut training and/or low-FODMAP diets to minimize GI distress. Ketogenic diets and/or ketone esters to improve ultramarathon performance are not currently evidence based, but further research needed. Strategically use caffeine in latter stages, particularly with sleep deprivation.

TABLE 13.1 Nutrition recommendations for ultrarunning in scientific literature.

ACSM (AMERICAN COLLEGE OF SPORTS MEDICINE) POSITION STATEMENT 2016

CARBOHYDRATE RECOMMENDATIONS	Up to $90 \mathrm{~g} / \mathrm{hr}$ while exercising (ultra specific), 6-10 $\mathrm{g} / \mathrm{kg} / \mathrm{d}$ (for endurance athletes, not ultra specific]
FLUID RECOMMENDATIONS	Drink $5-10 \mathrm{ml} / \mathrm{kg}$ in the 2-4 hrs before exercise [pale yellow urine color]. Drink enough during to limit day's weight loss to < 2% of body weight. Drink 1.25-1.5 L for every kg of weight lost after; none of these are specific for ultra-endurance.
SODIUM RECOMMENDATIONS	Keep blood sodium above $135 \mathrm{mmol} / \mathrm{L}$; doesn't say how to achieve it, nor is it ultra specific
OTHER RECOMMENDATIONS	Nitrates improve exercise tolerance, economy, and performance in at least non-elite athletes.

TABLE 13.1 Nutrition recommendations for ultrarunning in scientific literature.

FIGURE 13.7 A nutrition report card.

BODYWEIGHT[KG]	3-4 HOURS PRIOR	2-3 HOURS PRIOR	1-2 HOURS PRIOR	0-60 MINUTES PRIOR
	$1.5-2.0 \mathrm{~g} / \mathrm{kg}$	$1.0-1.5 \mathrm{~g} / \mathrm{kg}$	$0.5-1.0 \mathrm{~g} / \mathrm{kg}$	$0.25-0.5 \mathrm{~g} / \mathrm{kg}$
55 (121 lb.)	83-110	55-83	28-55	14-28
60 (132 lb.)	90-120	60-90	30-60	15-30
65 [143 lb.)	98-130	65-98	33-65	16-33
70 (154 lb.)	105-140	70-105	35-70	18-35
75 (165 lb.)	113-150	75-113	38-75	19-38
80 [176 lb.)	120-160	80-120	40-80	20-40
85 [187 lb.)	128-170	85-128	43-85	21-43

TABLE 13.2 Carbohydrate recommendations prior to exercise.

FIGURE 13.8
When a recovery drink is useful.

Vanilla gel:
engineered food that is sweet
Koop's bacon \& egg rice ball:
real food that is savory and salty

Off Target
Turkey sandwich, yogurt, potatoes

FIGURE 14.1 A sample bull's-eye nutrition strategy.

DIETARY STRATEGY	CARBOHYDRATE CONTENT
Very low-carbohydrate ketogenic diet	$<50 \mathrm{~g}$ carbohydrate/day
Low-carbohydrate diet	$15-30 \%$ of calories from carbohydrate
High-carbohydrate diet	$60-65 \%$ of calories from carbohydrate
Consensus from International Society of Sports Nutrition	60% of calories from carbohydrate

TABLE 14.1 Carbohydrate content of different dietary strategies. Adapted from Burke 2020; Tiller et al. 2019; Wylie-Rosette 2016.

dietary strategy	advantages	disadvantages
Low-carbohydrate high-fat or Ketogenic (defined by less than 50 g CHO/day)	Increased fat oxidation, sparing endogenous glucose Lower need for exogenous carbohydrates during activity Decreased body fat percentage	Inability to train and race at higher intensities Less efficient at transporting carbohydrates across gut membrane Increase risk of bone-stress injuries from hormonal changes affecting bone remodeling Restricted sources of food, specifically fruits and vegetables Can lead to low energy availability
High-carbohydrate low-fat	Consistently high training quality Trains the gut to facilitate more glucose absorption	Possible overreliance on carbohydrate as a fuel source
Periodized carbohydrates	Matches training intensity/ duration to substrate needs Enhanced fat oxidation due to cellular changes in the muscle No diminished training quality	Logistically difficult to implement

TABLE 14.2 Advantages and disadvantages of dietary strategies to manipulate substrate utilization. Adapted from Burke 2020; Tiller et al. 2019; Wylie-Rosette 2016.

TRAINING STRATEGY	STEP 1	STEP 2	STEP 3	STEP 4
Two-a-day	Running interval session	Restrict carbohydrate immediately post run	Second session of $1.5-2$-hour EnduranceRun performed without fuel	Refuel with carbohydrate post run
Fasted run	Overnight fast	EnduranceRun of $1.5-2$-hour upon waking. Performed without fuel	Refuel with carbohydrate post run	

TABLE 14.3 Training strategies to enhance fat oxidation.

TABLE 14.4 How hydration and natremic states converge.

Mental Skills Training Interventions

FIGURE 15.1 How improved mental skills can help you utilize more of your total physiological capacity.

FIGURE 15.2 Schematic of the perceived end point interaction.

FIGURE 15.3 How an athlete adjusts pacing due to perceived end point interactions.

FIGURE 15.4 How an athlete can go awry with an early perceived end point interaction forecast.

FIGURE 15.5 How staying in the moment avoids inaccurate forecasting.

THINGS TO BE MINDFUL OF	THINGS THAT WILL DISTRACT YOU
Rate of perceived exertion	Looking at the pace on your watch
Internal confidence	Where you are compared to others
Taking things one mile at a time	Calculating the distance to the next aid station

TABLE 15.1 An example inventory of attentional cues to be mindful of and what thoughts can be distractive.

FIGURE 15.6 Sequence of imagery exercises.

IDENTIFY WHAT YOU WANT TO ACHIEVE	MATCH SELF-TALK
Keep pushing when the race gets hard	"You've trained hard enough," "You've got this"
Run your own race	"Relax, focus on your effort"
Maximize effort during a training session	"Keep pushing, almost there"
Pole-strike effectively	"Plant your pole firmly, follow all the way through"

TABLE 15.2 Matching self-talk strategies to what you want to achieve.

FIGURE 15.7 Step one in finding your why.

THINGS I DO CONSISTENTLY

THE COMMON THEME IS IMPROVEMENT OR BETTERMENT

FIGURE 15.8 Step two in finding your why.

FIGURE 15.9 Where to start and how to incorporate mental skills.

FIGURE 16.2 A bigger challenge that is balanced with a larger affinity for risk.

FIGURE 16.3 An easier challenge that is balanced with a smaller affinity for risk.

FIGURE 16.4 A bigger challenge that is not balanced with a larger affinity for risk.

FIGURE 16.5 An easy challenge that is thrown out of balance with a large affinity for risk.

FIGURE 16.6 Relationship between coefficient of variation (CV) in speed and finish time for the ten fastest finishers of the Western States 100. The fastest finishers had the lowest variation in speed. Source: Hoffman 2014.

FIGURE 16.7 Comparison of Tempo intervals done in (A) in training to (B) the climbs in a race.

FIGURE 16.8 A 30K cycling time trial done with information on distance and without. Source: Wingfield 2018.

FIGURE 16.9 Perceived exertion end point interaction.

FIGURE 16.11 When athletes drop out in a 100-mile race. Source: Brager et al. 2020.

RACE SECTION	FOOD	FLUID	SUPPLEMENTS
Start to aid station 1	2 gels	1 drink mix in bottle 1	1 salt tab
		1 drink mix in bottle 2	1 amino acid capsule
Aid station 1 to aid station 2	2 gels	Water in bottle 1	1 salt tab
	1 energy bar	1 electrolyte tablet in bottle 2	
		Coke in aid station	
Aid station 2 to aid station 3	1 pack energy chews	$1 / 2$ drink mix, $1 / 2$ scoop whey protein in bottle 1	2 salt tabs
	1⁄2 pack energy chews	Water in bottle 2	
		Ginger ale in aid station	
Aid station 3 to finish	2 gels	$1 / 2$ drink mix, $1 / 2$ Coke in bottle 1	1 salt tab
	1 pack energy chews	1 electrolyte tablet in bottle 2	1 amino acid capsule

TABLE 16.1 An overcomplicated nutrition plan.

Vanilla gel:
engineered food that is sweet
Koop's bacon \& egg rice ball:
real food that is savory and salty

Off Target

Turkey sandwich, yogurt, potatoes

FIGURE 16.12 Example of a bull's-eye nutrition plan.

Vanilla gel:
engineered food that is sweet

Koop's bacon \& egg rice ball:
real food that is savory and salty

FIGURE 16.13 Target customization for a shorter, more intense ultra.

RACE SECTION	FOOD	FLUID	SUPPLEMENTS
Start to aid station 1 [2 hours)	100 calories total (1 gel)	20-30 oz. total [water)	None
Aid station 1 to aid station 1 (2 hours)	400-500 calories total (gels and prepackaged bar)	30-50 oz. total [water and drink mix]	None
Aid station 2 to aid station 3 (3 hours)	600-750 calories total (rice balls, gels, energy chews)	50-70 oz. total [water and drink mix]	1 salt tab
Aid station 3 to finish (2 hours)	400-500 calories total [gels and prepackaged bar)	~50 oz. total [water and drink mix]	Ginger chews or antacid if necessary

TABLE 16.2 A simplified nutrition plan.

FIGURE 17.1 Percentage of racers competing in multiple races per year. Adapted from Andersen 2020.

AMERICAN RIVER 50

BADWATER 135

COMRADES MARATHON

HARDROCK 100

JAVELINA JUNDRED

JFK 50

LAKE SONOMA 50

LEADVILLE TRAIL 100

TOR DES GÉANTS

VERMONT 100

WASATCH FRONT 100

WESTERN STATES 100

